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Abstract. Room category recognition is a highly
desired functionality in household robots as it en-
ables natural indoor navigation without having to
rely solely on range sensors. Significant research has
been invested into the problem of image-based room
recognition. All approaches assume that the image
contains a single category and usually apply holis-
tic scene models. This assumption is often violated
in realistic robotic scenarios, in which a robot ob-
serves several room categories within its view. We
propose an alternative approach for room category
recognition, based on per-pixel semantic segmenta-
tion. Our approach decomposes the input image into
semantic regions, and easily deals with images con-
taining either a single or multiple categories. As
a side product, each room category is localized in
the image, which makes our approach suitable for
robotic exploration and navigation based on visual
feedbacks. Our approach is evaluated on a new
dataset, annotated with pixel-wise ground-truth la-
bels for eight room categories. Results show that our
approach outperforms the state-of-the-art in recogni-
tion as well as pixel-wise localization. Our approach
exhibits a remarkable robustness to rotation and out-
performs the holistic state-of-the-art approach even
on examples with a single category.

1. Introduction

Visual room categorization is a high-level com-
puter vision task in which the system is presented
with an image of an indoor scene, and is expected
to predict the most likely semantic label of the room
depicted in the image. Such systems are extremely
useful in mobile robotics, where the maps of envi-
ronment, used for navigation, do not include such
semantic information. A typical household robot
would need to recognize the semantic meaning of

Figure 1: Example of an image with multiple room
categories present. Holistic approaches, such as
PlacesNet [23], can only report a single (dominant)
room category, while our approach produces a coarse
segmentation that enables multi-category recognition
as well as in-image category localization.

its current location in order to successfully reason
about the given tasks, and to be able to navigate the
surroundings and perform operations in appropriate
rooms.

Recently, computer-vision-based room classifica-
tion methods have achieved high classification ac-
curacy by employing convolutional neural networks,
trained on large annotated datasets of indoor and out-
door scenes [23, 6, 21]. However, the main limita-
tion of these approaches lies in the formalization of
the classification task, where the image is classified
holistically, i.e., the entire scene is assigned a single
semantic label. This is true even for methods that
otherwise utilize spatial information [9, 13]. In real-
istic scenarios, the observed indoor scenes frequently
contain multiple room categories. Figure 1 shows an
example with different rooms and areas with distinct
semantic functionality present in a single view. In



such cases, the majority of existing room classifica-
tion approaches is limited to producing only a single
output label. Some of the approaches do provide a
probability distribution over the possible room cate-
gories, but this is still insufficient for accurate cate-
gory localization within the robot field of view.

We propose a change of paradigm in room cate-
gorization by casting it as a problem of approximate
semantic segmentation. Our approach uses local and
contextual information to infer the most likely room
category at each pixel. The final room category is
estimated by aggregating per-pixel classifications. In
contrast to existing approaches that apply holistic ag-
gregation into a single category, our approach detects
clusters of category labels in the image and can be
considered as non-parametric estimation. Thus the
approach is expected to be more robust than related
approaches in cases when observing an image with a
single as well as multiple categories. As a side prod-
uct, our approach allows category localization within
an image.

We claim two contributions. The first contribution
is a novel approach for room classification and local-
ization, based on semantic segmentation, which we
call the RoomNet. To the best of our knowledge,
this is the first method that addresses the problem
of room classification through semantic segmenta-
tion. Our second contribution is a new dataset for
room classification. In contrast to existing datasets,
our dataset contains images with a single and multi-
ple categories and is per-pixel labeled with the cat-
egory identities. Our RoomNet is evaluated exten-
sively on this dataset. Results conclusively show
that the RoomNet outperforms a recent state-of-the-
art room classification approach by approximately
15% on multiple as well as single category images,
is more robust to view rotation and performs accurate
localization.

The remainder of this paper is organized as fol-
lows. Section 2 overviews the related work, Sec-
tion 3 describes the proposed room categorization
approach, Section 4 presents the experimental eval-
uation, and conclusions are drawn in Section 5.

2. Related work

Majority of existing literature in the field of
vision-based room categorization employs holistic
descriptors; they construct a feature representation
corresponding to the entire image, and classify it
with a multi-class classifier. The traditional ap-

proaches rely on bag-of-words representations, con-
structed from low-level features. In [3], authors con-
struct a “bag of keypoints” representation from key-
points, detected using Harris affine detector and en-
coded by SIFT descriptor; the resulting feature vec-
tor is classified using naive Bayes classifier. In [8],
the holistic bag-of-words descriptor is constructed
from HOG features, classified using an SVM. In [1],
authors use SIFT features, compressed with LDA,
and classify them using several machine learning
techniques. Texture descriptors, such as oriented tex-
ture curves [19] and semantic proto-concepts [10]
have also been adopted for general scene classifica-
tion. To include spatial information in the holistic
descriptors, several researchers apply spatial pyramid
histograms [17, 14].

The second line of work employs object detec-
tors and reasons about the room category based on
occurrence of their responses. In [9], authors pro-
pose to process an input image with a large bank of
pre-trained object detectors, and combine their re-
sponses into a single scene descriptor. The same fil-
ter bank is used by [11], who construct a high-level
image representation based on co-occurrences of de-
tector responses. Such approaches largely depend on
the quality of used detectors, as well as their repre-
sentativity for the particular room category. A more
general approach based on local description was pre-
sented in [13]. It exploits both local and global vi-
sual information by describing the scene using mul-
tiple regions in a star-shaped model. Authors in [12]
jointly learn the set of prototype regions and image
classifiers by random sampling image regions; the fi-
nal holistic representation is formed via concatena-
tion of the obtained region responses. [15] train in-
dividual object detectors and object-group detectors,
and max-pool their responses in a spatial pyramid.
In a similar scheme, [5] discover visually-coherent
patch clusters from an image collection that are max-
imally discriminative with respect to the labels.

The turning point in room classification has
been the advent of large domain-specific evaluation
datasets, which have provided a platform for method
comparison and further development. Datasets such
as MIT Indoor [13], SUN [20], Places205 [23], and
Places365 [22] are among the most widely used.
Some of them extend beyond indoor room categories.
However, due to the holistic ground-truth labels, they
are suitable only for evaluation of holistic room clas-
sification methods.



Figure 2: Schematic representation of the RoomNet network architecture.

The availability of large training datasets has
also boosted the utilization of deep-learning tech-
niques. In particular, convolutional neural networks
have been successfully applied to scene recognition
in [23]. The authors train the network on combi-
nation of ImageNet [4] and Places205 [23] datasets,
and use it as a generic feature extractor in combina-
tion with an SVM to achieve state-of-the-art results
on several scene recognition datasets. In [6], authors
use cutouts at multiple scales as the input to networks
in order to better handle geometric invariance. The
system proposed in [21] generates activation maps
that correspond to regions with discriminative infor-
mation for each class, and uses them to classify im-
ages. Another part-based system [18] uses CNN fea-
tures extracted from generic region proposals to in-
crease robustness to partial occlusions. In contrast to
our work, all these methods still address the holistic
task of predicting a single label for the input image.

The use of segmentation in our work is reminis-
cent of the scene-parsing task [24]. The latter is
low-level, and is concerned with segmenting the im-
age into regions that correspond to individual objects.
Therefore, our work can be seen as situated between
the high-level holistic scene classification and low-
level scene parsing, and instead of providing a single
category label or segmented individual objects, aims
to segment image regions that correspond to distinct
semantic room types.

3. Methodology

The theoretical framework of our approach is the
DeepLab [2] CNN architecture which was developed
for generic semantic segmentation. The DeepLab
network is based on the VGG-16 network [16], and
is fine-tuned for segmentation of the 21 categories
from Pascal VOC 2012 dataset. The bottom ten lay-

ers are based on VGG-16, comprising five series of
convolutional layers with interspersed max-pooling
layers. At the top of the network, there are three
fully-connected layers, separated by two drop-out
layers. The output of the final layer is a per-pixel la-
bel distribution map, which is spatially interpolated
with factor 8 to the original image resolution. The
DeepLab [2] originally applies a conditional random
field (CRF) to improve per-pixel segmentation accu-
racy.

Our network, which we call the RoomNet, is de-
picted in Figure 2. The RoomNet re-uses the bot-
tom ten convolutional and max-pool layers of the
DeepLab network, and re-trains the top three fully-
connected layers on the task of segmentation for
room localization and categorization. The top fully-
connected (output) layer, l8, contains nine channels
corresponding to the eight room categories in our
dataset plus the background label. The ninth channel
corresponding to the background class is used only
in the training phase to account for the "unassigned"
pixels in the ground truth. The network architecture
and parameters of individual layers are summarized
in Table 1.

3.1. Training

In the training stage, each spatial unit (collection
of the channel responses at the same spatial position)
is connected to a softmax classifier that predicts the
most likely class label at that location. Due to reduc-
tions in the lower network layers, the resulting output
map is subsampled by factor 8 compared to the input
image size. The network upper layers are optimized
with respect to the loss function, based on the sum
of cross-entropy terms for each spatial unit, with all
positions and labels being weighted equally, and the
targets being the pixel-wise ground-truth labels (also



Table 1: Properties of the RoomNet network layers.
The li layers are convolutional, pi layers are max-
pooling, and di layers are drop-out layers. In the
upper part of the network, the fully-connected lay-
ers (l6, l7, and l8) are implemented via convolutional
layers. The last column contains filter parameters:
kernel size K, padding P , and stride S. If not speci-
fied, P = 0 and S = 1. H denotes the parameter of
the “atrous algorithm” introduced by [2].

Layer Size Channels Filter parameters

l1 256× 256 64 K = 3, P = 1
p1 129× 129 64 K = 2, P = 1, S = 2
l2 129× 129 128 K = 3, P = 1
p2 65× 65 128 K = 2, P = 1, S = 2
l3 65× 65 256 K = 3, P = 1
p3 33× 33 256 K = 2, P = 1, S = 2
l4 33× 33 512 K = 3, P = 1
p4 32× 32 512 K = 2, S = 1
l5 32× 32 512 K = 3, P = 2, H = 2
p5 32× 32 512 K = 3, P = 1, S = 1

l6 32× 32 4096 K = 4, P = 6, H = 4
d1 32× 32 4096
l7 32× 32 4096 K = 1
d2 32× 32 4096

l8 32× 32 9 K = 1

subsampled by the factor 8). For details of the cost
function, we refer the interested reader to [2].

3.2. Testing

During the inference, the response maps of the l8
layer are interpolated to the original image size. Af-
ter the interpolation, the final segmentation map is
obtained by selecting a label with highest probability
at each pixel location. In contrast to the DeepLab [2],
we do not apply the CRF, since high per-pixel accu-
racy is not required for room category inference. The
boundaries between different room types in images
are not as well defined as the boundaries between ob-
jects, therefore each room category can be localized
only approximately. Any further spatial regulariza-
tion would merely result in an unnecessary increase
in computational cost.

4. Experimental evaluation

The implementation details of our approach are
provided in Section 4.1. The dataset is described in
Section 4.2. The experimental results are described
and discussed in Section 4.3.

4.1. Implementation details

The RoomNet network was implemented in the
Caffe framework [7]. We have used the training por-
tion of the dataset, presented in Section 4.2, to train
the top three fully-connected layers. The training hy-
perparameters were set to the values recommended
by the Caffe documentation. Layers l6 and l7 are ini-
tialized with the DeepLab data and only fine-tuned
for our scenario with learning rate 10−3. Layer l8
is initialized with random weights, and trained from
scratch with initial learning rate 10−2, which is after-
wards decreasing with factor λ = 0.1 per epoch. We
use mini-batch size of 10 images, training momen-
tum µ = 0.9, and weight decay of 0.0005.

4.2. Dataset

The existing datasets are tailored for evaluation of
holistic room categorization performance and con-
tain only a single category label per image. We
thus assembled a new dataset that provides pixel-
wise room category annotations. Our dataset is based
on the MIT Indoor [13] dataset, which contains im-
ages of 67 indoor scene categories. Note that we have
noticed that in fact several images from this dataset
contain multiple room categories, but are annotated
only with a single category. We selected a subset of 8
categories corresponding to most common household
rooms: bathroom, bedroom, children room, closet,
corridor, dinning room, kitchen, and living room.
This selection was extended by additional images
from the internet, that contained multiple room cat-
egories within a single image. To account for local-
ization ambiguity, we introduced a special category
for the background, which accounts for the image re-
gions that cannot be reliably attributed to any of the
room categories.

The dataset is summarized in Figure 3. It contains
8029 images, 1778 of which are in the testing set.
We have made sure that the distribution of classes
in both training and testing sets are equal. In to-
tal 465 images contain two or more room categories.
Each image is manually annotated on per-pixel basis
with the nine possible category labels. From the co-
occurrence matrix in Figure 3 we can see that most
categories appear together at least in one image. The
most frequently co-occurring rooms are kitchen, din-
ing room, and living room. Such arrangements are
typical for small apartments.



Figure 3: Our dataset overview. The pie-chart on the
left presents the distribution of room categories, the
co-occurrence matrix on the right shows the number
of simultaneous appearances of two categories in the
same image.

4.3. Experimental results

We compare the proposed approach against the
state-of-the-art room categorization method called
the PlacesNet from [23]. The PlacesNet applies a
pre-trained CNN as a generic feature extractor to en-
code the input image as a 4096-dimensional feature
vector and an SVM for classification. We consider
the variant with Places205-AlexNet network, which
was trained on the Places205 [23] dataset. To train
this pipeline on our dataset, we extract the CNN
features from training images with the pre-trained
Places205-AlexNet, and use them to train the lin-
ear one-vs-rest SVM. Note that we train only with
the subset of training images that contain a single
room category. In our preliminary study we trained
with multi-room samples as well (i.e., treating each
such image as multiple samples with corresponding
labels), but have observed significantly worse perfor-
mance.

Two evaluation scenarios are considered. The first
scenario considers room category presence detection.
Here, the task is to correctly identify the labels for the
categories present in the image. The second scenario
considers localization of these categories as well. In
addition we conduct a robustness study in which the
input images are rotated. Image rotation is com-
mon in mobile platforms due to camera tilting during
robot motion.

Table 2: Summary of the experimental results. The
table shows the accuracy for single-room classifica-
tion task, the best F-score for multi-room classifica-
tion task, and the IoU score for the localization task.

Approach Accuracy F-score IoU

PlacesNet [23] 0.79 0.72 0.73
RoomNet (ours) 0.90 0.83 0.84

4.4. Room category presence detection

To maintain relation to the existing holistic bench-
marks, both methods were first compared in terms
of classification accuracy on a subset of images that
only contain a single room category.

The most likely category is determined in our
RoomNet by determining the category with maxi-
mum number of pixels associated. The accuracy of
classification is shown in the left-most column of Ta-
ble 2. Our RooomNet significantly outperforms the
PlacesNet even on this, traditionally holistic, task by
approximately 14 %. This boost speaks in favor of
our non-parametric formulation of category estima-
tion through segmentation. The ambiguous pixels,
or pixels stemming potentially from other categories,
represent non-dominant categories and do not affect
dominant class prediction, thus increasing the robust-
ness of RoomNet.

Next, the entire dataset was considered for multi-
category classification. Both methods were adapted
to report classes where the reported score of the class
is higher than the Θ portion of the maximum output
class. For PlacesNet the class score is the output of
each one-vs-all SVM classifier (distance to the de-
cision hyperplane) normalized by softmax to obtain
the presence probability of each class. For Room-
Net the probability of each class corresponds to the
percentage of the pixels assigned to it.

The multi-category results are shown in Figure 4
in terms of F-score and precision-recall with re-
spect to the threshold Θ. The RoomNet consistently
outperforms the PlacesNet in F-score. In fact, the
RoomNet achieves an excellent performance already
at moderate threshold levels. Since our dataset is
dominated by single-category images, we show the
F-scores separately for single-category and multiple-
category images (second row in Figure 4). The
single-category graph is similar to the overall F-score
plot. The multiple-category graphs shows that our
RoomNet outperforms the PlacesNet when a single



category is reported (Θ = 1). The improvement
is most significant for Θ selected for each method
separately. Table 2 depicts average performance of
RoomNet and PlacesNet at their best values of Θ on
single and mixed room category images. The Room-
Net outperforms the PlacesNet by over 15 %. The
precision-recall curve of RoomNet in Figure 4 is con-
sistently above that of the PlacesNet. The best recall
achieved by PlacesNet is close to 0.8, with 0.68 pre-
cision. Our RoomNet achieves approximately 0.84
precision at the 0.8 recall, thus by far outperforming
the PlacesNet.

The results again support our non-parametric for-
mulation in which the category of a single pixel does
not pollute the global classification score, but rather
contributes to the specific class through a cluster of
pixels.

Figure 4: Top row: F-score and precision-recall
curves for multi-class categorization with respect to
parameter Θ. Bottom row: F-score plots with respect
to parameter Θ only for single room and multiple
room images.

4.5. Room category localization

The task of room category localization in an
image is posed as a semantic segmentation prob-
lem. Similarly to semantic segmentation evalua-
tion, we estimate the localization performance by
the intersection-over-union (IoU) score. The score is
modified to account for the background class that we
have reserved for ambiguous regions in the ground
truth annotation. Pixels that are labeled as back-
ground in the ground truth are ignored in the cal-
culation of the IoU score since the correct class is

unknown at these locations.
Holistic methods are unable to provide category

location information, since they provide only a sin-
gle output label. Thus, the segmentation map for
PlacesNet is computed by assigning the output label
to all pixels in the image. Such straightforward ex-
tension indeed results in suboptimal performance on
multi-room images as only a single room category is
reported. On the other hand, PlacesNet should have
advantage on images that contain only a single class,
since a correct global decision results in 100 % label-
ing accuracy. The RoomNet is required to make such
predictions for each pixel independently, which is a
competitive disadvantage in single-category images.
This is illustrated in Figure 5. The PlacesNet method
predicts more images with a perfect IoU score, but
those are all single-category images. It also receives
a very low score on a large portion of the testing
dataset. These are the images with multiple rooms
and mis-categorized single rooms where the IoU is
0 %. The RoomNet method achieves high (although
sometimes not perfect) IoU in single-category im-
ages and achieves a better global performance than
the PlacesNet. According to the average IoU score
in Table 2, the RoomNet outperforms the PlacesNet
by 15 % in IoU score.

Figure 5: IoU score for all testing images sorted in
decreasing order.

Figure 6 shows confusion matrices computed from
pixel-wise classifications. Our RoomNet outper-
forms PlacesNet across all categories. The Places-
Net sometimes miss-classifies bathroom and chil-
drens room for bedroom. The RoomNet significantly
reduces these mixups. The reduction in false classifi-
cations is also apparent in the case of dinning rooms.
PlacesNet often miss-classifies them as a kitchen or
a living room. The miss-classification is reduced by
RoomNet by 15 percentage points (∼20 % improve-
ment).

4.6. Robustness to image rotation

To evaluate the rotational invariance we have re-
peated the classification and localization experiments



Figure 6: Confusion matrices for localization task.

from Section 4.4 and Section 4.5 on a modified
datasets where all images were rotated by an angle
α ∈ [0, 180] degrees.

The results for the single and multiple room clas-
sification are shown in Figure 8. Results show a re-
markable robustness of RoomNet to rotations of up
to 30 degrees. The drop in accuracy is within 10 %,
and approximately 5 % in F-score and IoU. In case
of PlacesNet, the drop in accuracy is twice as large,
while in F-score and IoU is four times as large. At
30 degree rotation, the PlacesNet accuracy is approx-
imately 0.59, while the accuracy of our RoomNet is
still at approximately 0.83. Thus the improvement of
our RoomNet over PlacesNet is in order of 40 % at
30 degree rotation. For significant rotations, the pe-
formance of both approaches drops, but the drop is
still more significant for the PlacesNet than for our
RoomNet.

The segmentation performance for different image
rotation angles is visualized in Figure 8. On single
room images the holistic PlacesNet method has the
advantage as it estimates only global category, how-
ever, if the method fails, the entire segmentation is
incorrect. The RoomNet produces some small incor-
rect regions in such cases because it has to classify
them individually, but overall the results are consis-
tent with the ground truth labels. In case of multi-
room images the difference is even more apparent.
PlacesNet can only recognize a single category, usu-
ally the dominant one. But in many cases the re-
sults are completely incorrect. The RoomNet pro-
vides a decent localization. For unusual rotation an-
gles, the segmentation also includes small regions
of incorrect predictions that could be improved in
a post-processing step which takes into account the
size of the regions and prior information about co-
occurrence of room categories.

Figure 7: Classification accuracy for single room
classification task and F-score for multi-room clas-
sification in relation to input image rotation.

5. Conclusion

A new approach for image-based room catego-
rization was proposed. In contrast to related ap-
proaches that perform a global classification by ag-
gregating features into a holistic representation, our
approach applies a non-parametric technique. The
non-parametric property comes from estimating the
support for a particular category at a pixel level and
separately aggregating the votes for each category.
This is achieved by casting the categorization prob-
lem as a semantic segmentation task in which each
pixel is assigned a room category label. A CNN
framework is used to construct our semantic segmen-
tation network – the RoomNet. In addition to the
novel room recognition network we presented a new
dataset for room categorization and localization. The
dataset is per-pixel annotated groundtruth with eight
room categories.

Extensive analysis was performed to compare
the RoomNet with a recent state-of-the-art Places-
Net [23]. Our approach outperforms the Places-
Net on the task of single-category as well as multi-
category classification. The RoomNet exhibits an ex-
cellent ability for localization of categories in the im-
ages and is significantly more robust to image rota-
tion than the PlacesNet. The RoomNet achieves ap-
proximately 15 % better accuracy in room category



Figure 8: Examples of segmentation obtained for
different rotation angles. The top example shows per-
formance for a single room image, while the other
two examples show performance for images where
two rooms are present in the same image.

detection. Our RoomNet goes beyond the state-of-
the-art by allowing room category localization in ad-

dition to recognition.
Our future work will include extending the Room-

Net by increasing the (indoor and outdoor) place cat-
egories. The approach will be extended to a mobile
robot scenario in which the provided segmentations
from RoomNet will be used to increase the accuracy
of localization and motion planning during robotic
exploration.
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